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Abstract—The technological advancements in video surveil-
lance systems represent a modern, secure, and sustainable in-
frastructure for smart cities. Nevertheless, detecting anomalous
events in surveillance footage remains challenging, often necessi-
tating considerable human intervention. A notable anomaly with
severe implications is the presence of BLACK-ICE on highway
surfaces. The presence of BLACK-ICE renders the road slippery,
heightening the risk of safety incidents for pedestrians and vehi-
cles. Notably, identifying BLACK-ICE is challenging due to its
transparent nature, distinguishing it from other slippery surfaces
like wet or snowy roads. In this regard, Closed-Circuit Television
(CCTV) systems deployed on roadways emerge as a valuable
tool for BLACK-ICE detection. Recognizing the time-sensitive
nature of anomaly detection in computer vision applications,
this research specifically focuses on investigating BLACK-ICE
surface detection using edge devices. A novel method based
on the Convolutional Neural Network (CNN), which calculates
the sharpness and glossiness factors of the road surface, has
been introduced to enhance performance and optimize resource
utilization without compromising accuracy.

Index Terms—Road Safety, BLACK-ICE Detection, CCTV,
Machine Learning, Sharpness and Glossiness.

I. INTRODUCTION

The safety systems within smart cities play a vital role,
especially considering the potential risks posed by various
environmental factors. A notable anomaly on highways is the
existence of icy road surface conditions, where annually in
the United States, more than 116, 800 individuals experience
injuries in vehicle accidents on icy pavements, as indicated by
the Federal Highway Administration [1]. Beyond the hazards
posed by icy conditions, BLACK-ICE is identified as an even
more difficult situation, frequently leading to accidents. The
collision involving 69 vehicles on the Virginia Expressway
in December 2019 and a traffic incident on the Yeongcheon
Expressway in Korea during the same month were attributed
to the presence of BLACK-ICE [2]. The incidents resulting
in casualties from BLACK-ICE accidents persist on a global
scale. Various preventive measures, including the proposal of
initiatives such as the installation of grooving, the deployment
of LED signs, and the implementation of heat wires on road
surfaces, are currently under consideration . However, given
that these measures are not preemptive, efforts are underway

to formulate a proactive strategy to prevent BLACK-ICE
accidents.

Identifying BLACK-ICE is challenging for drivers, creating
unsafe situations [2]. Even though some advanced sensors
exist for BLACK-ICE detection, they have some potential
and challenges. Table I illustrates a compilation of prevalent
sensors utilized for ice detection, accompanied by their re-
spective detection methodologies and associated challenges.
Even though Contact sensors [3], IR sensors [4], and Optical
sensors [5] have high accuracy in detecting icy roads surfaces,
their substantial installation costs is a big challenge. On the
other hand, the most common sensor is the camera, while its
sensitivity in low-light conditions holds significance. There-
fore, it is noteworthy that the impact of low-light conditions
in deployed solutions on CCTVs should be mitigated.

Video surveillance has a significant application of CV, ex-
tensively utilized in both public and private settings for obser-
vation and monitoring purposes . Intelligent video surveillance
systems are deployed to autonomously identify, monitor, and
analyze entities at an advanced level, eliminating the need
for human intervention [7]. The increasing deployment of
surveillance cameras in public spaces, including roadways,
intersections, and shopping centers, aims to enhance public
safety [8]. However, the monitoring capacities of law en-
forcement organizations have not kept pace, resulting in a
noticeable disparity in camera usage, rendering the camera-
to-human monitor ratio unsustainable [9].

This paper introduces an innovative method to reuse the
existing infrastructures with significant potential as a cost-
effective and tolerant solution applicable to diverse cold-
climate scenarios. In this regard, a Fully Convolutional Neural
Network (FCNN) is utilized to extract the Region Of Inter-
est (ROI) mask by detecting the road surface. Employing
the resultant ROI as the input for the classifier markedly
reduces computational load, concurrently elevating accuracy.
After identifying the ROI geometry, a MobileNet classification
model is employed to classify images as ICE or NOT-ICE,
while BLACK-ICE falls under the space between these two
categories. In addition, we introduced a novel formula called
the BLACK-ICE factor, tailored to process information with
heightened accuracy, addressing the complexities associated
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TABLE I
SUMMARY OF EXISTING SENSOR DEVICES USED IN BLACK-ICE DETECTION.

Sensor Name BLACK-ICE Detection Method Main Challenge

Contact sensors [3] Temperature and humidity estimations to verify conditions
conducive to black ice formation

Complexity of managing distributed sensors
Substantial installation costs

IR sensors [4]
Optical sensors [5]

Leveraging absorption coefficients that vary with wavelength Susceptibility to sunlight interference
Substantial installation costs

Cameras [2], [6] Vision-based approach to detect black ice on road surfaces Susceptibility to low light conditions

with uncertainty in the determination between BLACK-ICE
and NOT-ICE. The empirical findings in our investigation
reveal the capacity to identify BLACK-ICE with a precision
rate of 98.6%. Additionally, the processing time of each frame
is 10.8 milliseconds with power consumption of 10.23 watts.
These results underscore the efficacy of our algorithm in
achieving real-time and dependable BLACK-ICE detection,
particularly when deployed on edge devices.

II. PRELIMINARIES AND BACKGROUND

A. HSV Image Format

The HSV color space is designed to mimic human’s inter-
pretation of colors by representing the color information into
Hue, Saturation, and Value components. Hue represents the
type of color, such as red, green, or blue. It is measured in
degrees on a color wheel, where 0 and 360 correspond to
red, 120 to green, and 240 to blue. The circular nature of the
hue scale reflects the continuous spectrum of colors. Saturation
refers to the intensity or vividness of a color. A saturation value
of 0 results in a grayscale image, while higher values represent
more vibrant colors. Saturation is typically normalized to a
scale between 0 and 1. The value represents the brightness
or lightness of a color. The 0 value corresponds to black,
and 1 corresponds to white. Intermediate values determine the
intensity of the color.

B. Sharpness and Glossiness

Sharpness refers to the clarity and detail in an image [10]. A
sharp image has well-defined edges and fine details. Glossiness
refers to the perception of shininess or reflective quality in an
image [11]. It is the property of a surface to reflect light in
a specular (mirror-like) manner. Glossiness is often associated
with the material and lighting conditions in a scene.

C. MobileNet

MobileNet is a family of neural network architectures
designed for efficient and lightweight deep learning on mobile
and embedded devices [12]. The MobileNet architecture is
flexible and can be customized to different computational
budgets by adjusting hyperparameters. This adaptability makes
it suitable for different applications, including image classifica-
tion, object detection, and semantic segmentation, particularly
in environments with limited computational resources includ-
ing edge devices and IoT devices.

III. PROPOSED METHOD

The proposed method unfolds in two phases: ROI mask
extraction and BLACK-ICE detection. The initial phase is
executed only once per camera view; thus, its computational
expense remains separate from real-time processing. Subse-
quently, the second phase encompasses the real-time analysis
of road surface and the detection of possible danger.

A. Phase I: ROI Mask Extraction
This phase consists of the ROI mask determination which

occurs as a one-time process for each CCTV system, main-
taining a fixed viewpoint. To this end, we employed an
FCNN, which represents an adapted model based on CNN
and is renowned for its efficacy in image classification. FCNN
demonstrates proficiency in learning to delineate the road
surface area within input images [9]. Comprising three seg-
ments, including an encoder (consisting of a pre-trained model
and 1-by-1 convolutions) and a decoder (involving transposed
convolutions), FCNN exhibits notable performance. We served
a VGG16 trained on the ImageNet dataset as the encoder.
Notably, its 1-by-1 convolution layer is substituted with a
fully-connected layer. The decoder incorporates transposed
convolution layers to upsample the input, restoring it to its
original size.

Figure 1(a) presents the input image. We denote it by x ⊂
NC×H×W , where C, H , and W indicate the number of input
channels and the image height and width, respectively. The
FCNN extracts the ROI identifying the road surface, as shown
in Fig.1(b). Following this, Fig.1(c) presents its corresponding
ROI mask M . Through the cropping of the input image using
M , a masked image x′ ⊆ x is produced. Also, M remains
constant for each CCTV system, computed only once and
stored in the embedded memory. During the inference phase,
it is retrieved from the memory, incurring no computational
load. In addition, ROI acts to narrow down the processing area,
optimizing the search for a solution and concurrently reducing
overall power consumption. The focused processing not only
minimizes PT, moving towards real-time problem-solving but
also contributes to efficiency gains by excluding irrelevant
points from processing, ultimately leading to a reduction in
overall power consumption.

B. Phase II: BLACK-ICE Detection
The primary objective of this phase is to detect the BLACK-

ICE while enhancing the performance and concurrently reduc-
ing energy consumption and resource utilization compared to
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Fig. 1. The steps of generating ROI by the FCNN model. (a)The input image
x. (b)Overlaying the ROI mask M with x. (c)The masked ROI x′.

contemporary methods. In this regard, this section delineates
our algorithm and the implementation for calculating the
likelihood of the existence of BLACK-ICE in the masked
image x′. Initially, we constructed a dataset comprising road
surface images, categorized into two classes: ICE and NOT-
ICE. In this classification, images containing BLACK-ICE are
designated under the ICE category. For the classification of
the input image x′, we conduct training on the MobileNet-V2
model using our generated dataset, which generates from [13]
dataset images. This model predicts the likelihood of x′ for the
ICE class, denoted as yice ∈ [0, 1], and can be parameterized
as Equation (1).

yice = M(Θ, x′) (1)

where, M is tne computational mode (MobileNet-v2) and Θ
is the model parameters. Of course, for each input image x′,
the MobileNet-v2 generates two values yice, ȳiceϵ[0, 1], which
represent the ICE likelihood and NOT-ICE likelihood, respec-
tively. Since yice + ȳice = 1, we omit ȳice in the presentation.
Then, the sharpness factor S [14] of x′ is calculated according
to the gradient of the image by Equation (2).

S =
1

|x′|
∑
i∈x′

√(
∂Ii
∂wi

)2

+

(
∂Ii
∂hi

)2

(2)

where, |x′| is the total number of pixels in x′, Ii ∈ [0, 255]
indicates the intensity of the pixel i, and (wi, hi) is its position
in the image x′. As well, the intensity Ii for each pixel i of
an HSV image is approximately calculated by Equation (3),
where Hi, Si and Vi are the corresponding Hue, Saturation,
and Value parameters, respectively.

Ii ≃ 0.299×Hi + 0.587× Si + 0.114× Vi (3)

In Equation (2) the ∂Ii

∂wi
and ∂Ii

∂hi
are the partial derivatives of

intensity with respect to wi and hi, representing the gradients
in the horizontal and vertical directions. The glossiness is
intricately linked to how light interacts with the surfaces
depicted in an image. In the endeavor to quantify glossiness,
we engage in the computation of local contrast. This process
entails determining the standard deviation of pixel intensities
within defined localized regions which is served as a metric
for assessing contrast. The glossiness factor gi [15] of pixel i
located in (wi, hi) position can be estimated utilizing Equation
(4).

gi =

√
1

|Ni|
∑
j∈Ni

(
Ij − Īi

)2
(4)

where, Ni denotes the set of neighboring pixels of pixel
i, Ij represents the intensity of the pixel situated at the
position (wj , hj) in the image x′. Also, Īi signifies the
average intensity of all the pixels in Ni. The comprehensive
glossiness factor for an entire image can be approximated
through Equation (5).

G ≃ E i∈x′
[
gi
]

(5)

For the computation of Sharpness and Glossiness factors
S and G, the HSV representation of the input image x′

is employed. This choice was motivated by the inherent
advantages of HSV, where the manipulation of overall image
brightness while preserving color information is more straight-
forward compared to the RGB representation. As delineated
by Equations (1) to (5), the parameters G, S , and yice exhibit
mutual independence, enabling concurrent computation during
the inference phase. In the end, the detection of differences be-
tween ICE and BLACK-ICE is achieved through the equation
6, while the identification of NOT-ICE, representing a normal
road surface, is facilitated by the presence of yice.

ω = G × S (6)

We have introduced a novel equation to calculate a unique
parameter known as the BLACK-ICE Factor, expressed in
Equation 9. In Equation 9, the parameter ν and µ are computed
using Equation 7, 8 where α and φ represent the hyperparame-
ter. Additionally, ∧ corresponds to the logical ”and” operation.

ν =

{
0 if yice < α
1 if yice ≥ α

(7)

µ =

{
0 if ω < φ
1 if ω ≥ φ

(8)

B = µ ∧ ν (9)

Figure 2 illustrates three categories of road surfaces in RGB
format and their corresponding HSV images. The values of G,
S , ω and yice as well as the corresponding BLACK-ICE Factor
B for the HSV images are detailed in Table II. Significantly,
the average value of ω for 100 images classified as BLACK-
ICE is 1719.12, demonstrated as AV GBI . Also, this average
for 100 ICE images that are not BLACK-ICE is 118.81,
demonstrated as AV GWI . The difference between AV GBI

and AV GWI provides a reasonable basis to conclude that if
ω exceeds the threshold of 1000, the model classifies x′ as
BLACK-ICE, suggesting that setting φ to 1000 is advisable.
Moreover, as illustrated in Table II, while there exists a notable
distinction in ω for NOT-ICE and BLACK-ICE, relying solely
on ω for BLACK-ICE detection is insufficient. This is because
ω can only accentuate the disparity between BLACK-ICE
and ICE, and the significance of ν is crucial for NOT-ICE
diagnosis. Algorithm 1 presents the general procedure of our
proposed method described in this section.
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Fig. 2. Three road surfaces in RGB format with their corresponding HSV
format. (a) RGB format for NOT-ICE. (b) RGB format for ICE. (c) RGB
format for BLACK-ICE. (d) HSV format for NOT-ICE. (e) HSV format for
ICE. (f) HSV format for BLACK-ICE.

TABLE II
THE VALUES OF G , S , yice , AND B FOR FIG.2 IMAGE. AV GBI AND
AV GWI REPRESENT THE AVERAGE OF THE PARAMETERS FOR 100

IMAGES FOR BLACK-ICE AND ICE (NOT BLACK-ICE) CATEGORIES.

Category S G yice ω B
BLACK-ICE 25.34 84.76 0.84 2147.81 1
ICE 4.97 14.85 0.96 73.80 0
NOT-ICE 30.24 8.49 0.13 256.73 0
AV GBI 27.21 63.18 0.85 1719.12 1
AV GWI 6.77 17.55 0.93 118.81 0

Algorithm 1 BLACK-ICE Detection.
Inputs: x (Input image), M (ROI mask), Θ (MobileNet parameters),
α and φ (hyperparameters)
Output: BLACK-ICE existence label
x′ ←M(x)
begin parallel section

yice ←M(Θ, x′)
S ← Equation 2
G ← Equation 5

end parallel section
ω ← Equation 6
ν ← Equation 7
µ← Equation 8
B ← Equation 9
if B == 0 then

return Not BLACK-ICE
else

return ”BLACK-ICE”
end

IV. EVALUATION AND DISCUSSION

This section assesses and contrasts our suggested approach
with the most effective state-of-the-art approaches. The pro-
posed algorithm is implemented and executed on a Mini-PC
Intel® NUC Core™ i5-1145G7 Processor with 8 MB Cache,
16 GB DDR4 RAM, and 4.4 GHz frequency.

A. Experimental Setup

In the initial phase of our experimentation, we first train
the FCNN model to acquire the road mask, denoted as M .
This mask is subsequently stored in embedded memory for
the inference phase. The training process involved utilizing
the KITTI Road dataset [16], comprising 508 images designed
for road and lane estimation. These images were formatted
in a bird’s-eye-view perspective, with a 128 × 128 pixels
resolution. Specifically, 384 images were designated for the
training section, while the remaining 124 images constituted

the test set. The FCNN underwent training with 100 epochs,
a batch size of 8, and a learning rate of 0.001, ultimately
achieving a commendable test accuracy of 87.3%.

In the next step, we trained the MobileNet-v2 model param-
eters, Θ, according to the hyperparameters detailed in Table IV
and the datasets presented in [13]. The distribution of images
in each category is outlined in Table III, and the BLACK-
ICE images are encompassed within the ICE category. The
MobileNet model demonstrated a high accuracy of 97.8% in
classifying ICE and NOT-ICE images on the test images.

The proposed algorithm underwent rigorous testing on three
types of datasets, which we refer to as TYPE I, TYPE II, and
TYPE III. Besides, TYPE I comprises 50 ICE images and 20
BLACK-ICE images, serving the sole purpose of assessing the
accuracy in detecting BLACK-ICE from ICE images through
the utilization of glossiness and sharpness factors. Also, TYPE
II consists of 50 ICE images, 20 BLACK-ICE images, and
an additional 80 NOT-ICE images, aimed to evaluate the
accuracy and PT of BLACK-ICE detection using MobileNet
and BLACK-ICE factor B. Additionally, TYPE III mirrors the
image quantity and category distribution of TYPE II, differs
in that the images contain additional details beyond the road
surface for analyzing the effects of M on the accuracy, PT,
and power usage. TYPE III is employed to gauge the accuracy
and PT of the proposed algorithm outlined in Algorithm 1. For
TYPE III dataset, a road surface mask M was computed and
stored for each image. Subsequently, in the ensuing subsection,
we compare our proposed algorithm’s accuracy and power
usage with other vision-based models, ultimately reporting on
the observed PT.

TABLE III
GENERATED DATASET FOR TRAINING THE MOBILNET-V2 MODEL.

BLACK-ICE IMAGES ARE ENCOMPASSED WITHIN THE ICE CATEGORY.

Category # Train # Test
ICE 250 50
BLACK-ICE 70 10
NOT-ICE 320 60

TABLE IV
THE HYPERPARAMETERS OF MOBILENET-V2.

Hyperparameter Value
Width Multiplier 1.0
Resolution Multiplier 1.0
Depthwise Separable Convolution Yes
Initial Number of Filters 32
Expansion Factor 6
Dropout Rate 0.2
Activation Function ReLU
Number of Classes 2
Batch Size 16
Number of Epochs 100

B. Discussion

We conduct a comparative evaluation of the model accuracy
and processing time across the test datasets. As illustrated
in Fig.3, the best value for α is determined to be 0.3.
Additionally, it is advisable to set the value of φ to 1000.



The outcomes presented in Table V indicate that the pro-
posed model attains a perfect accuracy of 100% in detecting
BLACK-ICE in TYPE I. In TYPE II, the proposed model
achieves an accuracy of 98.9%. As indicated in Table V,
the accuracy of our proposed model in detecting BLACK-
ICE surpasses that of the MobileNet-V2 model (97.8%). This
improvement is attributed to cases where BLACK-ICE images
are potentially misclassified as NOT-ICE by MobileNet-V2.
Our proposed algorithm (1) addresses this by detecting such
images through the calculation of the BLACK-ICE factor,B.
Additionally, it is worth noting that both TYPE II and TYPE I
share identical PT values, thanks to the parallel processing
section of the proposed algorithm, as detailed in Table V.
Lastly, in TYPE III, the proposed model’s accuracy experiences
a slight decrease (98.6%) influenced by incorporating FCNN
effects. Despite this decrease, the PT of the proposed algorithm
is recorded at 10.8 ms, demonstrating appropriateness for real-
time processing [17]. Moreover, the macro recall and macro
precision metrics for ”TYPE III” are determined to be 99.16%
and 96.96% respectively.

Fig. 3. The effect of α on the accuracy of the proposed model.

TABLE V
THE ACCURACY AND PROCESSING TIME OF ALGORITHM 1.

TYPE Accuracy% Processing Time(ms)
I 100 9.1
II 98.9 9.1
III 98.6 10.8

Fig. 4. The confusion matrix for TYPE III classification.

Figure 4 depicts the confusion matrix of the proposed
method test on ”TYPE III”, revealing predominantly misclas-
sifies NOT-ICE images as BLACK-ICE. This misclassification
stems from errors within the FCNN and MobileNet models.
According to this information, the F1-score for the ICE
category in ”TYPE III” stands at 100%, while for BLACK-
ICE it is 95%, and for NOT-ICE it is 99%. Accordingly, from
a safety standpoint, the proposed method rarely misclassifies
the BLACK-ICE category, rendering it suitable for safe driving
applications. As delineated in Table VI, the proposed model
attains the highest level of accuracy at an impressive 98.6%.
Moreover, to measure power usage, we employed the cProfile
Python library. For the comparison, we calculated the number
of MAC operations for all the models, estimating their power
usage based on the relationship between the number of MAC
operations and power. The proposed model demonstrates the
second most economical power consumption compared to the
other models under consideration, registering at 10.23 W. This
observation underscores the suitability of the proposed model
for operation on resource-aware devices. This improvement
becomes particularly critical when deploying the proposed
model on edge devices such as CCTVs and portable devices
with limited resources.

TABLE VI
COMPARISON OF THE ACCURACY AND POWER CONSUMPTION OF THE

PROPOSED MODEL WITH THE STATE-OF-THE-ART ON TYPE III DATASET.

Model Accuracy% Power(W)
Proposed model 98.6 10.23
CNN [2] 98.3 15.31
Hyperspectral + DL [18] 97 12.78
CNN [19] 95.6 13.52
CNN [20] 95 10.83
Image Analysis [21] 83 9.74

V. RELATED WORKS

The identification of BLACK-ICE has been investigated
through diverse approaches, encompassing sensor-based meth-
ods [22], sound wave utilization [23], [24], and the application
of light sources [25]. Tabatabai and Aljuboori [22], [26]
focused on BLACK-ICE, ice, and water detection on roads and
bridges, employing sensors embedded within concrete. Their
proposed sensor, based on alterations in electrical resistance
between stainless steel columns inside the concrete, proved
effective in detecting road surface conditions, offering the
potential for accident prevention. Additionally, Alimasi et al
[27] designed a BLACK-ICE detector using an optical sensor
and an infrared thermometer. Abdalla et al [26] introduced
a Kinect-based system for BLACK-ICE detection, including
classifying various ice types, thickness, and volume measure-
ments. They achieved high accuracy in denoting ice within
a specific camera range, with a low error rate in measured
thickness and volume. Ma and Ruan [25] investigated a
BLACK-ICE detection method utilizing three-wavelength non-
contact optical technology. Employing wavelengths (1310 nm,
1430 nm, 1550 nm), they differentiated dry, wet, BLACK-ICE,



ice, and snowy conditions. Their study successfully detected
BLACK-ICE through each wavelength’s reflectance, laying
the groundwork for potential equipment development in road
condition detection. Kim et al [19] utilized Range-FFT results
obtained by the mmWave sensor for BLACK-ICE detection,
with accuracy dependent on the surface’s smoothness or rough-
ness. Furthermore, Lee et al [2] employed CNNs for BLACK-
ICE detection using camera images. Despite achieving high
accuracy through deep learning, this approach incurred in-
creased computational operations and subsequent higher power
consumption.

VI. CONCLUSION

The primary objective of this research is the development
of an efficient algorithm for BLACK-ICE detection in CCTV
images, emphasizing considerations of accuracy and resource
efficiency tailored for edge devices. At first, an FCNN gen-
erates the ROI mask according to each camera view, empha-
sizing the road surface. This strategy reduces computational
load and diminishes power consumption when executing on
resource-aware edge devices. In the following, a MobileNet-
V2 model is trained to classify the ROI region into either
ICE or NOT-ICE categories. Simultaneously, Glossiness and
Sharpness factors are computed for this region. In addition, we
introduced a BLACK-ICE factor (B) based on the Glossiness,
Sharpness, and ICE likelihood calculated by the MobileNet
model to identify instances of BLACK-ICE. The presented
algorithm showcased an accuracy level of 98.6% with a power
consumption of 10.23 W, reflecting a significant reduction
of 33% in power usage and superior accuracy compared to
current vision-based models. This comprehensive approach
integrates multiple image analysis techniques, contributing
to a robust solution for real-time BLACK-ICE detection in
surveillance scenarios.
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[24] D. Gailius, S. Jačėnas, Ice detection on a road by analyzing tire to road
friction ultrasonic noise, Ultragarsas/Ultrasound 62 (2) (2007) 17–20.

[25] X. Ma, C. Ruan, Method for black ice detection on roads using tri-
wavelength backscattering measurements, Applied Optics 59 (24) (2020)
7242–7246.

[26] Y. E. Abdalla, M. T. Iqbal, M. Shehata, Black ice detection system
using kinect, in: 2017 IEEE 30th Canadian Conference on Electrical
and Computer Engineering (CCECE), IEEE, 2017, pp. 1–4.

[27] N. ALIMASI, S. TAKAHASHI, H. ENOMOTO, Development of a
mobile optical system to detect road-freezing conditions, Bulletin of
Glaciological Research 30 (2012) 41–51.


